Experiments with an Ensemble Self-Generating Neural Network

نویسندگان

  • Hirotaka INOUE
  • Hiroyuki NARIHISA
چکیده

In an earlier paper, we introduced an ensemble model called ESGNN (ensemble self-generating neural network) which can be used to reduce the error for classification and chaotic time series prediction. Although this model can obtain the high accuracy than a single SGNN, the computational cost increase in proportion to the number of SGNN in an ensemble. In this paper, we propose a new pruning SGNN algorithm to reduce the memory requirement for classification. We compared ESGNN with nearest neighbor classifier using a collection of machine-learning benchmarks. Experimental results show that our method could reduce the memory requirement and improve the accuracy over the nearest neighbor classifier’s accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ensemble strategies to build neural network to facilitate decision making

There are three major strategies to form neural network ensembles. The simplest one is the Cross Validation strategy in which all members are trained with the same training data. Bagging and boosting strategies pro-duce perturbed sample from training data. This paper provides an ideal model based on two important factors: activation function and number of neurons in the hidden layer and based u...

متن کامل

Efficient Pruning Method for Ensemble Self-Generating Neural Networks

Recently, multiple classifier systems (MCS) have been used for practical applications to improve classification accuracy. Self-generating neural networks (SGNN) are one of the suitable base-classifiers for MCS because of their simple setting and fast learning. However, the computation cost of the MCS increases in proportion to the number of SGNN. In this paper, we propose an efficient pruning m...

متن کامل

Research of Individual Neural Network Generation and Ensemble Algorithm Based on Quotient Space Granularity Clustering

The aim of this paper is to develop an individual neural network generation and ensemble algorithm based on quotient space granularity clustering. Firstly, we give the characteristics of the quotient space granularity and affinity propagation(AP) clustering. Secondly, we introduce the quotient space concept to the AP clustering analysis, which can find an optimal granularity from all possible g...

متن کامل

Parallel and Distributed Mining with Ensemble Self-Generating Neural Networks

In this paper, we present the improving capability of accuracy and the parallel efficiency of ensemble selfgenerating neural networks (ESGNNs) for classification on a MIMD parallel computer. Self-generating neural networks (SGNNs) are originally proposed on adopting to classification or clustering by automatically constructing self-generating neural tree (SGNT) from given training data. ESGNNs ...

متن کامل

Monitoring of Regional Low-Flow Frequency Using Artificial Neural Networks

Ecosystem of arid and semiarid regions of the world, much of the country lies in the sensitive and fragile environment Canvases are that factors in the extinction and destruction are easily destroyed in this paper, artificial neural networks (ANNs) are introduced to obtain improved regional low-flow estimates at ungauged sites. A multilayer perceptron (MLP) network is used to identify the funct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007